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ABSTRACT 

Let 𝑊 ⊆ 𝑉(𝐺) be a 𝜒𝑠 - set of 𝐺 and let 𝐺 = (𝑉, 𝐸) be a connected graph. If  𝑊 is the 

only 𝜒𝑠  - set that contains 𝑇, then a subset 𝑇 ⊆ 𝑊  is said to be a forcing subset of 𝑊 . A 

minimum forcing subset of 𝑊 is a forcing subset for 𝑊of minimum cardinality. The cardinality 

of a minimum forcing subset of 𝑊 is represented by the forcing Steiner chromatic number of 

𝑊, indicated by 𝑓𝜒𝑠
(𝑊). The forcing Steiner chromatic number of 𝐺 is represented by the 

symbol 𝑓𝜒𝑠
(𝐺), and it is equal to 𝑓𝜒𝑠

(𝐺) = 𝑚𝑖𝑛{𝑓𝜒𝑠
(𝑊)}, where the minimum is calculated 

across all 𝜒𝑠  - sets of 𝐺 . Several common graphs forcing Steiner chromatic numbers are 

identified. These notions are examined for certain general properties. We characterise 

connected graphs with the forcing Steiner chromatic number of 0 or 1. It is demonstrated that 

there exists a connected graph 𝐺  such that 𝑓𝜒𝑠
(𝐺) = 𝑎 and 𝜒𝑠(𝐺) = 𝑏, where 𝜒𝑠(𝐺) is the 

Steiner chromatic number of 𝐺. This is true for all numbers 𝑎, 𝑏 with 0 ≤ 𝑎 ≤  𝑏, 𝑏 ≥ 2, and 

 𝑏 ≥ 𝑎 + 2. 

Keywords: chromatic number, Steiner number, Steiner chromatic number, forcing Steiner 

chromatic number. 

AMS Subject Classification: 05C12, 05C15. 

1. Introduction 

 Let 𝐺 =  (𝑉, 𝐸) be a graph having a vertex set 𝑉(𝐺) and an edge set 𝐸(𝐺) (𝑉(𝐺) or 

𝐸(𝐺) correspondingly). In addition, we state that a graph 𝐺 has size 𝑚 =  |𝐸(𝐺)| and order 

𝑛 =  |𝑉 (𝐺)|. We refer to [1] for the fundamental terms used in graph theory. If and only if an 

edge 𝑒 =  𝑢𝑣 ∈   𝐸(𝐺) exists, a vertex 𝑣 is next to a vertex 𝑢. If 𝑒 =  𝑢𝑣 ∈   𝐸(𝐺), then 𝑢 is 

neighbour, and the set of 𝑣 is neighbours is denoted by 𝑁𝐺(𝑣). The degree of a vertex 𝑣 ∈  𝑉 

is deg𝐺(𝑣) = |𝑁𝐺(𝑣)|. If deg𝐺(𝑣) =  𝑛 − 1, a vertex 𝑣 is said to be a universal vertex. The 

induced subgraph 𝐺[𝑆] is the largest subgraph of 𝐺 with the given vertex set 𝑆 for any set 𝑆 of 

vertices of 𝐺. If the subgraph induced by vertex 𝑣 is finished, then vertex 𝑣 is said to be an 

extreme vertex.  

 The length of the shortest 𝑢 − 𝑣 path in a connected graph 𝐺 is given by the distance 

𝑑(𝑢, 𝑣) between two vertices 𝑢 and 𝑣. With a nonempty set 𝑊 of vertices in a connected graph 

𝐺 , the Steiner distance 𝑑(𝑊)  of 𝑊  is the minimum size of a connected subgraph of 𝐺 

containing 𝑊. In [2], the Steiner distance was investigated. Let 𝑆(𝑊) be the collection of all 
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Steiner 𝑊- tree vertices. A set 𝑊 ⊆ 𝑉(𝐺) is referred to as a Steiner set of 𝐺 if 𝑆(𝑊)  =  𝑉(𝐺). 

The lowest cardinality for a Steiner set, commonly referred to as a minimum Steiner set or 

simply an 𝑠 - set, is the Steiner number 𝑠(𝐺)  of 𝐺 . The Steiner number 𝑠(𝐺)  of 𝐺 

determines the minimal cardinality of a Steiner set, which is also known as an 𝑠 - set. 

In the event where 𝐺[𝑊] is connected, 𝑑(𝑊) = |𝑊| − 1 and 𝑆(𝑊) = 𝑊. The Steiner 

number concept was covered in [3-16]. 

 A k-coloring of 𝐺 is a function with the form 𝑐: 𝑉 (𝐺) →  {1, 2, . . . , 𝑘}, where 𝑐(𝑢)  ≠

 𝑐(𝑣)  for any two adjacent vertices 𝑢  and 𝑣  in 𝐺 . The vertices of 𝐺  are given 𝑝  colours, 

1, 2, . . . , 𝑝, and the colouring is considered to be correct if no two clearly neighbouring vertices 

share the same colour. The chromatic number of 𝐺, represented by, 𝜒(𝐺) is the bare minimum 

of colours required to colour the vertices of 𝐺. 𝐺 is said to as being 𝑝 - chromatic if 𝜒(𝐺)  =

 𝑝, where 𝑝 ≤  𝑘. If 𝐶 contains each of the unique colour vertices in 𝐺, then the set 𝐶 ⊆  𝑉 (𝐺) 

is referred to as a chromatic set. The lowest cardinality among all the chromatic sets of 𝐺 is the 

chromatic number. That is, 𝜒(𝐺)  =  𝑚𝑖𝑛{|𝐶𝑖|/𝐶𝑖 is a chromatic set of 𝐺}  denotes a 

chromatic set of 𝐺. In [17, 18], the chromatic number notion was explored.  

If 𝑊 is both a Steiner set and a chromatic set of 𝐺, it is referred to 𝑊 ⊆ 𝑉(𝐺) as a 

Steiner chromatic set of 𝐺. The Steiner chromatic number of 𝐺, which is represented by the 

symbol 𝜒𝑠(𝐺), is the minimal cardinality of a Steiner chromatic set of 𝐺. [19] investigated the 

Steiner chromatic number theory.  

In [20], the forcing notion was first discussed and introduced. Further research is found 

in [21, 22, 23, 24, 25]. Several authors have investigated the forcing notion in relation to various 

factors, including geodetic, Steiner, hull, diversion, monophonic, etc. The forcing idea in 

relation to minimum Stiener chromatic sets is examined in this article. The sequel makes use 

of the following theorems. 

Theorem:1.1[19]. Every Steiner chromatic set of a connected graph 𝐺 contains an extreme 

vertex that belongs to that set.  

Theorem:1.2[19]. The Steiner chromatic set of 𝐺  includes each universal vertex in the 

connected graph 𝐺. 

Theorem:1.3[19]. For the graph 𝐺 = 𝐾1,𝑎 (𝑎 ≥ 2), 𝜒𝑠(𝐺) = 𝑎 

2. The Forcing Steiner Chromatic Number of a Graph 

Definition:2.1. Let 𝑊 ⊆ 𝑉(𝐺) be a 𝜒𝑠(𝐺) set of 𝐺 and let 𝐺 = (𝑉, 𝐸) be a connected graph. 

If 𝑊 is the only 𝜒𝑠 - set that contains 𝑇, then a subset 𝑇 ⊆ 𝑊 is said to be a forcing subset of 

𝑊. A minimum forcing subset of 𝑊 is a forcing subset for 𝑊of minimum cardinality. The 
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cardinality of a minimum forcing subset of 𝑊 is represented by the forcing Steiner chromatic 

number of 𝑊, indicated by 𝑓𝜒𝑠
(𝑊). The forcing Steiner chromatic number of 𝐺 is denoted by 

𝑓𝜒𝑠
(𝐺), and it is equal to 𝑓𝜒𝑠

(𝐺) = min{𝑓𝜒𝑠
(𝑊)}, where the minimum is calculated across all 

𝜒𝑠 - sets of 𝐺. 

Example:2.2. For the graph 𝐺 given in Figure. 2.1, assign the colors as follows: 

 

 

Let 𝑐(𝑣1) = 1, 𝑐(𝑣3) = 𝑐(𝑣5) = 2, 𝑐(𝑣2) = 𝑐(𝑣6) = 3, and  𝑐(𝑣4) = 𝑐(𝑣7) = 4.  

Then 𝑊1 = {𝑣1, 𝑣3, 𝑣6, 𝑣7} and 𝑊2 = {𝑣1, 𝑣2, 𝑣4, 𝑣6} are the only two 𝜒𝑠 - sets of 𝐺 such that 

𝑓𝜒𝑠
(𝑊1) = 𝑓𝜒𝑠

(𝑊2) = 1 so that 𝑓𝜒𝑠
(𝐺) = 1. 

Definition:2.3. A vertex 𝑣 is said to be a Steiner chromatic vertex of 𝐺 if 𝑣 belongs to every 

𝜒𝑠 - sets of 𝐺. 

Remark:2.4. For the graph 𝐺 given in Figure. 2.1, {𝑣1, 𝑣6} is the set of all Steiner chromatic 

vertices of 𝐺. 

Observation:2.5. Let 𝐺 be a connected graph. Then 

(a) for any connected graph 𝐺, 0 ≤ 𝑓𝜒𝑠
(𝐺) ≤ χ𝑠(𝐺). 

(b) 𝑓𝜒𝑠
(𝐺) = 0 if and only if 𝐺 has a distinct Steiner chromatic set with a minimum. 

(c)  𝑓𝜒𝑠
(𝐺) = 1 if and only if 𝐺 has at least two minimal Steiner chromatic sets, at least one of 

which is a special minimum Steiner chromatic set containing one of its components. 

(d) If and only if no minimum Steiner chromatic set of 𝐺  is the only minimum Steiner 

chromatic set that contains any of its appropriate subsets, then 𝑓𝜒𝑠
(𝐺) = χ𝑠(𝐺). 

(e) The set of all the Steiner chromatic vertices of G is represented by the expression 𝑓𝜒𝑠
(𝐺) ≤

𝜒𝑠(𝐺) − |𝜒 |. 

 

 

𝑣1 
𝑣5 𝑣6 𝑣7 

𝑣3 

𝑣4 

𝐺 

Figure: 2.1 

𝑣2 
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3. Some Results on Forcing Steiner Chromatic Number of 𝑮. 

The forcing chromatic number of a few common graphs is determined in the section 

that follows. 

Theorem:3.1. For a complete graph 𝐺 = 𝐾𝑛 (𝑛 ≥ 2), 𝑓𝜒𝑠
= 0. 

Proof: By Theorem 1.1, 𝑊 = 𝑉(𝐺) is the only set of 𝜒𝑠 for G. The conclusion then arises from 

Observation 2.5(b).  

Theorem:3.2. 𝑓𝜒𝑠
= 0 if 𝐺 is a connected graph with at least one universal vertex.  

Proof: This follows from Theorem 1.2 and Observation 2.5(b). 

Corollary:3.3. Let 𝐺 to be either a fan graph 𝐹𝑛 or a wheel graph 𝑊𝑛. Therefore 𝑓𝜒𝑠
(𝐺) = 0.  

Corollary:3.4 For the graph 𝐺 = 𝐾𝑛 − 𝑒 (𝑛 ≥ 4), 𝑓𝜒𝑠
(𝐺) = 0. 

Corollary:3.5 For the graph 𝐺 = 𝐾1 +∪ 𝑚𝑗𝑘𝑗  where ∑ 𝑚𝑗 ≥ 2, 𝑓𝜒𝑠
(𝐺) = 0. 

Theorem:3.6 For the path 𝐺 = 𝑃𝑛, (𝑛 ≥ 4), 𝑓𝜒𝑠
(𝐺) = {

0     𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛
1      𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑

. 

Proof: Let 𝑉(𝑃𝑛) = {𝑣1, 𝑣2, … … , 𝑣𝑛}. We have the following two cases. 

Case (i): 𝑛 is even. Let 𝑛 = 2𝑘 (𝑘 ≥ 2). Assign the coloring as follows 𝑐(𝑣2𝑖−1) = 𝑐1 and 

𝑐(𝑣2𝑖) = 𝑐2, 1 ≤ i ≤ k . Then 𝑊 = {𝑣1, 𝑣𝑛} is the unique 𝜒𝑠 - set of 𝐺 so that  𝑓𝜒𝑠
(𝐺) = 0. 

Case (ii): 𝑛 is odd. Let 𝑛 = 2𝑘 + 1 (𝑘 ≥ 2). Assign the coloring as follows 

                     𝑐(𝑣2𝑖−1) = 1, for 1 ≤ 𝑖 ≤ 𝑘 − 1, 

                     𝑐(𝑣2𝑘+1) = 𝑐3, 

                     𝑐(𝑣2𝑖) = 2, for 1 ≤ 𝑖 ≤ 𝑘. 

Then 𝜒𝑠 – set is not unique. Therefore 𝑓𝜒𝑠
(𝐺) ≥ 1. Since 𝑊 = {𝑣1, 𝑣2, 𝑣𝑛} is the unique 𝜒𝑠 - 

set containing 𝑣2, 𝑓𝜒𝑠
(𝑊) = 1. Hence it follows that 𝑓𝜒𝑠

(𝐺) = 1. 

Theorem:3.7. For the cycle 𝐺 = 𝐶𝑛 (𝑛 ≥ 4), 𝑓𝜒𝑠
(𝐺) = {

0         𝑖𝑓 𝑛 = 5
1      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. 

Proof: Let 𝑉(𝐶𝑛) = {𝑣1, 𝑣2, … … … , 𝑣𝑛}, we have the following cases. 

Case (i): 𝑛 is even. Let 𝑛 = 2𝑘 (𝑘 ≥ 2), we assign coloring for each vertex as follows 

 𝑐(𝑣1) = 𝑐(𝑣3) =  … … … = 𝑐(𝑣2𝑘−1) = 𝑐1 and 

 𝑐(𝑣2) = 𝑐(𝑣4) =  … … … = 𝑐(𝑣2𝑘) = 𝑐2 . 

Then 𝑊 = {𝑣1, 𝑣𝑘+1} is a 𝜒𝑠  - set of 𝐺  so that 𝜒𝑠(𝐺) = 2. Since 𝑛 ≥ 4, the 𝜒𝑠  - set is not 

unique, and as a result, 𝑓𝜒𝑠
(𝐺) ≥ 1. We have 𝑓𝜒𝑠

(𝐺) = 1 since 𝑊 is the only 𝜒𝑠 - set of 𝐺 that 

contains the value 𝑣1.  
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Case (ii): 𝑛 is odd. Let 𝑛 = 2𝑘 + 1 (𝑘 ≥ 2). It is easily verified that no two element subset of 

𝐺 is not a Steiner chromatic set of 𝐺 and so 𝜒𝑠 ≥ 3. Let 𝑘 = 2. Then we assign the follows 

colors 

  𝑐(𝑣1) = 𝑐(𝑣3) = 𝑐1, 

  𝑐(𝑣2) = 𝑐(𝑣5) = 𝑐2 and 

  𝑐(𝑣4) = 𝑐3. 

 Then 𝑊 = {𝑣1, 𝑣2, 𝑣4} is the unique 𝜒𝑠  - set of 𝐺 so that 𝜒𝑠(𝐺) = 3 and 𝑓𝜒𝑠
(𝐺) = 0. 

So, let 𝑘 ≥ 3. Then we assign the following colors 

     𝑐(𝑣1) = 𝑐(𝑣3) =  … … … = 𝑐(𝑣𝑘) = 𝑐(𝑣𝑘+3) = 𝑐(𝑣𝑘+5) =  … … … = 𝑐(𝑣2𝑘) = 9, 

     𝑐(𝑣2) = 𝑐(𝑣4) =  … … … = 𝑐(𝑣𝑘+1) = 𝑐(𝑣𝑘+4) = 𝑐(𝑣𝑘+6) =  … … … = 𝑐(𝑣2𝑘+1) = 5 and    

     𝑐(𝑣𝑘+2) = 𝑐3.  

 Then 𝑊1 = {𝑣1, 𝑣4, 𝑣𝑘+2} and 𝑊2 = {𝑣1, 𝑣2, 𝑣𝑘+2} are the only two 𝜒𝑠  – sets of 𝐺 so 

that 𝜒𝑠 = 3 and  𝑓𝜒𝑠
(𝐺) = 1. 

Theorem:3.8. For the complete bipartite graph 𝐺 = 𝐾𝑟,𝑠 (1 ≤ 𝑟 ≤ 𝑠), 𝑓𝜒𝑠
(𝐺) = 0. 

Proof: For 𝑟 = 1, 𝑠 ≥ 1, by Theorem: 3.1,  𝑓𝜒𝑠
(𝐺) = 0. So let 2 ≤ 𝑟 ≤ 𝑠. Let 𝑋 and 𝑌 be two 

bipartite sets of 𝐺. Then either 𝑋 and 𝑌 is a Steiner set of 𝐺. Since for 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌, 𝑥𝑦 ∈

𝐸(𝐺), each vertex of 𝐺 is assigned by distinct colors. Then it follows that 𝑊 = 𝑉(𝐺) is the 

unique 𝜒𝑠 - set of 𝐺 so that 𝜒𝑠(𝐺) = 𝑟 + 𝑠 and 𝑓𝜒𝑠
(𝐺) = 0. 

Theorem:3.9. For the ladder 𝐺 = 𝐾2 × 𝑃𝑛 (𝑛 ≥ 3),  𝑓𝜒𝑠
(𝐺) = {

1     𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑
0     𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛

. 

Proof: Let 𝑥1, 𝑥2, … … , 𝑥𝑛 and 𝑦1, 𝑦2, … … , 𝑦𝑛 be the vertices on the path 𝑃𝑛 of the laph from 

the top to bottom on the left side and right side respectively. We have the following cases 

Case (i): 𝑛 is odd. Let 𝑛 = 2𝑘 − 1; 𝑘 ≥ 2. Then assign the colors for each vertex as follows 

𝑐(𝑥2𝑖−1) = 𝑐(𝑦2𝑖) = 1 for 1 ≤ 𝑖 ≤ 𝑘  and 𝑐(𝑥2𝑖) = 𝑐(𝑦2𝑖−1) = 2 for 1 ≤ 𝑖 ≤ 𝑘 . Then 𝑊1 =

{𝑥1, 𝑦2𝑘−1} and 𝑊2 = {𝑦1, 𝑥2𝑘−1} are the only 𝜒𝑠 – sets of 𝐺 such that 𝑓𝜒𝑠
(𝑊1) = 𝑓𝜒𝑠

(𝑊2) = 1 

so that 𝑓𝜒𝑠
(𝐺) = 1. 

Case (ii): 𝑛 is even. Let 𝑛 = 2𝑘; 𝑘 ≥ 4. Then we assign the colors for each vertex as follows.     

         Let 𝑐(𝑥2𝑖−1) = 1 (1 ≤ 𝑖 ≤ 𝑘 − 1),  

    𝑐(𝑦2𝑖) = 1 (1 ≤ 𝑖 ≤ 𝑘 − 1), 

    𝑐(𝑥2𝑖) = 2 (1 ≤ 𝑖 ≤ 𝑘 − 1), 

    𝑐(𝑦2𝑖−1) = 2 (1 ≤ 𝑖 ≤ 𝑘), 

    𝑐(𝑥2𝑘) = 3 and 𝑐(𝑦2𝑘) = 4. 

Then 𝑊 = {𝑥1, 𝑥2𝑘, 𝑦1, 𝑦2𝑘} is the unique 𝜒𝑠 – set of 𝐺 so that 𝑓𝜒𝑠
(𝐺) = 0. 
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Theorem:3.10. Let 𝐺 be the graph formed by connecting the two complete graphs 𝐾𝑟,𝑟 and 

𝐾𝑟,𝑟 (𝑟 ≥ 2) along a path of any length 𝑟. Therefore 𝑓𝜒𝑠
(𝐺) = 0.  

Proof: Let 𝑋  and 𝑌  be the bipartite sets of first complete graph 𝐾𝑟,𝑟  and, 𝑈  and 𝑉  be the 

bipartite sets of the second complete graph. Let 𝑋 = {𝑥1, 𝑥2, … … , 𝑥𝑟}, 𝑌 = {𝑦1, 𝑦2, … … , 𝑦𝑟}, 

𝑈 = {𝑢1, 𝑢2, … … , 𝑢𝑟} and 𝑉 = {𝑣1, 𝑣2, … … , 𝑣𝑠}. Let 𝑃𝑟 ∶  𝑧1, 𝑧2, … … , 𝑧𝑟 . Let 𝐺 be the graph 

obtained from 𝐾𝑟,𝑟 , 𝐾𝑟,𝑟 and 𝑃𝑟  (𝑟 ≥ 2) by introducing the edges 𝑧1𝑦𝑟 and 𝑧𝑟𝑣1. We assign the 

colors for each vertex as follows. 

  𝑐(𝑥𝑖) = 𝑐(𝑣𝑖) = 𝑐𝑖 (𝑖 ≤ 𝑖 ≤ 𝑟), 

  𝑐(𝑦𝑖) = 𝑐(𝑢𝑖) = 𝑑𝑖 (𝑖 ≤ 𝑖 ≤ 𝑟), 

  𝑐(𝑧1) = 𝑐1, 𝑐(𝑧𝑟) = 𝑑1, 𝑐(𝑧𝑖) = 𝑐𝑖 (2 ≤ 𝑖 ≤ 𝑟 − 1). 

Then it follows that 𝑊 = {𝑦1, 𝑦2, … … , 𝑦𝑟} ∪ {𝑣1, 𝑣2, … … , 𝑣𝑠} is the unique 𝜒𝑠 - set of 𝐺 so that 

 𝑓𝜒𝑠
(𝐺) = 0. 

Theorem:3.11. There is a connected graph 𝐺 such that 𝑓𝜒𝑠
(𝐺) = 𝑎 and 𝜒𝑠(𝐺) = 𝑏 for every 

pair of integers 𝑎, 𝑏 with 0 < 𝑎 < 𝑏, 𝑏 ≥ 2 and 𝑏 > 𝑎 + 2.  

Proof: For 𝑎 = 0, let 𝐺 = 𝐾1,𝑎 . Then by Corollary 3.5 and Theorem 1.3,  𝑓𝜒𝑠
(𝐺) = 0 and 

𝜒𝑠(𝐺) = 𝑏. So let 𝑎 ≥ 1. Let 𝑃: 𝑢, 𝑣, 𝑤, 𝑥 be a path of order 4. Let 𝑃𝑖: 𝑢𝑖 , 𝑣𝑖 , 𝑤𝑖 (1 ≤ 𝑖 ≤ 𝑎) be 

a copy of path of order 3. Let 𝐻  be the graph obtained from 𝑃 and 𝑃𝑖 (1 ≤ 𝑖 ≤ 𝑎) by the 

introducing the edges 𝑣𝑢𝑖 , 𝑥𝑤𝑖, 𝑢𝑖𝑢𝑗  (𝑖 ≠ 𝑗)  and 𝑤𝑖𝑤𝑗  (𝑖 ≠ 𝑗), (1 ≤ 𝑖, 𝑗 ≤ 𝑎) . Let 𝐺  be the 

graph obtained from 𝐻 by adding the new vertices 𝑥1, 𝑥2, … … , 𝑥𝑏−𝑎−2 and introducing the 

edge 𝑥𝑥𝑖  (1 ≤ 𝑖 ≤ 𝑏 − 𝑎 − 2). The graph 𝐺 is shown in figure. 
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G Figure 3.1 

A graph 𝐺 with 𝑓𝜒𝑠
(𝐺) = 𝑎 and 𝜒𝑠(𝐺) = 𝑏 

 

First we prove that 𝜒𝑠(𝐺) = 𝑏. Let 𝑋 = {𝑢, 𝑥1, 𝑥2, … … , 𝑥𝑏−𝑎−2} the set of all end vertices of 

𝐺 by Theorem 1.1, 𝑍 is a subset of every Steiner chromatic set of 𝐺. Let 𝐻𝑖 = {𝑢𝑖 , 𝑤𝑖} (1 ≤

𝑖 ≤ 𝑎). Then it is easily seen that every Steiner chromatic set of 𝐺 contains exactly are vertex 

from each 𝐻𝑖(1 ≤ 𝑖 ≤ 𝑎). Let us assign colors for each vertex as follows. 

  𝑐(𝑢) = 𝑐(𝑥) = 𝑐, 𝑐(𝑣𝑖) = 𝑐 (1 ≤ 𝑖 ≤ 𝑎), 

  𝑐(𝑥𝑖) = 𝑐𝑖 (1 ≤ 𝑖 ≤ 𝑏 − 𝑎 − 2), 

  𝑐(𝑢𝑖) = 𝑐(𝑣𝑖) = 𝑑𝑖  (1 ≤ 𝑖 ≤ 𝑎), 

  𝑐(𝑣) = 𝑐1 and 

  𝑐(𝑤) = 𝑑1. 

 Let 𝑍 = 𝑋 ∪ {𝑥} . Then 𝑍  is a subset of every Steiner chromatic set of 𝐺  and so 

𝜒𝑠(𝐺) ≥ 𝑏 − 𝑎 + 𝑎 = 𝑏. Let 𝑊 = {𝑢1, 𝑢2, … … , 𝑢𝑎}. Then 𝑊 is Steiner chromatic set of 𝐺 so 

that 𝜒𝑠(𝐺) = 𝑏. 

 Next we prove that 𝑓𝜒𝑠
(𝐺) = 𝑎. By Observation 2.5 (e), 𝑓𝜒𝑠

(𝐺) ≤ 𝑏 − (𝑏 − 𝑎) = 𝑏. 

Since 𝑍 is a subset of every Steiner chromatic set of 𝐺 and every chromatic set of 𝐺 contains 

exactly one vertex from each 𝐻𝑖  (𝑖 ≤ 𝑖 ≤ 𝑎) , every 𝜒𝑠  - set is of the form 𝑊 = 𝑍 ∪

{𝑐1, 𝑐2, … … , 𝑐𝑎}, where 𝐶𝑖 ∈ 𝐻𝑖 (1 ≤ 𝑖 ≤ 𝑎). Let 𝑇  be a proper subset of 𝑊  with |𝑇| < 𝑎 . 

Then for some 𝑖, 𝐻𝑖 ∩ 𝑇 = ∅. This shows that 𝑓𝜒𝑠
(𝐺) = 𝑎.  

Conclusion: 

 In this paper the concept of forcing Steiner chromatic number of some standard graphs 

some general properties satisfied by this concept are studied. In future studies, the same concept 

will be applied for the other graph operations. 

References: 

1. F.Buckley and F.Harary, Distance in Graph, Addition-Wesly-wood city, CA, (1990). 

2. Y. Mao, Steiner Distance in Graphs - A Survey, Research Gate (2017). 

3. G. Chartrand, P. Zhang, The Steiner number of a graph, Discrete Math., 242 (2002), 41 - 

54. 

4. M. B. Frondoza and S. R. Canoy Jr., The edge Steiner number of a graph, Bulletin of the 

Malaysian Mathematical Sciences Society,35 (2012), 53 - 69. 

5. C. Hernando, T. Jiang, M. Mora, I. M. Pelayo and C. Seara, On the Steiner, geodetic and 

hull number of graphs, Discrete Math., 293 (2005), 139 - 154. 



ISSN 0976-5417                                 Cross Res. : June 2023                              Vol. 14 No. 1 
 

47 

 

6. Ismael G. Yero and Juan A. Rodriguez-Velazquez, Analogies between the geodetic number 

and the Steiner gumber of some classes of graphs, FILOMAT, 29:8 (2015), 1781 - 1788. 

7. J. John and M. S. Malchijah Raj, The upper restrained Steiner number of a graph, Discrete 

Mathematics, Algorithms and Applications, 12(1) (2019), 2050004. 

8. J. John,  The total Steiner number of a graph, Discrete Mathematics, Algorithms and 

Applications, 12(3) (2019), 2050038. 

9. J. John , The vertex Steiner number of a graph, Transactions on Combinatorics, 9(3) 

(2020), 115 - 124. 

10. J. John, The total edge Steiner number of a graph, Annals of the University of Craiova-

Mathematics and Computer Science Series, 48(1) (2021), 78 - 87. 

11. J. John , On the vertex monophonics, Vertex geodetic and vertex Steiner number of a graph, 

Asian-European Journal of Mathematics, 14(10) (2021), 2150171. 

12. 12. J. John, Comment on  Analogies between the geodetic  number and the Steiner 

gumber of     some classes of graphs, FILOMAT, 37(2), (2023), 585 - 589. 

13. Li-Da Tong, Geodetic sets and Stenier sets in graphs, Discrete Math., 309 (12) (2009),  205 

- 4207. 

14. I. M. Pelayo, Comment on ”The Steiner number of a graph” by G. Chartrand and P. Zhang, 

Discrete Math., 280 (2004), 259 - 263. 

15. A. P. Santhakumaran and J. John, The Upper Steiner Number of a Graph, Graph Theory 

Notes of New York LIX, (2010), 9 - 14. 

16. A. P. Santhakumaran and J. John, The edge Steiner number of a graph, J. Discrete Math. 

Sci. Cryptogr.,10 (2007), 677 - 696. 

17. S. Beulah Samli, J. John and S. Robinson Chellathurai, The double geo chromatic number 

of a graph, Bulletin of the International Mathematical Virtual Institute, 11(1) (2021), 25 - 

38. 

18. S. Butenko, P. Festa P. M. Pardalos, On the chromatic number of graphs, Journal of 

optimization theory and applications, 109, 69 - 83, (2001). 

19. S. Jency, V. Mary Gleeta and V.M. Arul Flower Mary, The forcing Steiner chromatic 

number of a graph (Communicated) 

20. G. Chartrand. H.Galvas, R.C. Vandell and F. Harary, The forcing domination number of a 

graph, J. Comb. Math.Comb. Computt., 25 (1997) 161 - 174. 

21. J. John and M. S. Malchijah Raj, The forcing non-split domination number of a graph, 

Korean Journal of  Mathematics, 29(1) (2021), 1 - 12.  



ISSN 0976-5417                                 Cross Res. : June 2023                              Vol. 14 No. 1 
 

48 

 

22. J. John and V. Sujin Flower, On the forcing domination and forcing total domination 

numbers of a graph, Graphs and Combinatorics, 38(142), 2022.  

23. S. Kavitha , S. Robinson Chellathurai and J. John, On the forcing connected domination 

number of a graph, J. Discrete Math. Sci. Cryptogr., 20(3), 2017, 611 - 624 

24. A. P. Santhakumaran and J. John, The forcing Steiner number of a graph, Discussiones 

Mathematicae Graph Theory, 31 (2011), 171 - 181. 

25. A. P. Santhakumaran and J. John, On the forcing geodetic and the forcing Steiner numbers 

of a graph, Discussiones Mathematicae Graph Theory, 31 (2011), 611 - 624. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


